The ADAR RNA editing enzyme controls neuronal excitability in Drosophila melanogaster
نویسندگان
چکیده
RNA editing by deamination of specific adenosine bases to inosines during pre-mRNA processing generates edited isoforms of proteins. Recoding RNA editing is more widespread in Drosophila than in vertebrates. Editing levels rise strongly at metamorphosis, and Adar(5G1) null mutant flies lack editing events in hundreds of CNS transcripts; mutant flies have reduced viability, severely defective locomotion and age-dependent neurodegeneration. On the other hand, overexpressing an adult dADAR isoform with high enzymatic activity ubiquitously during larval and pupal stages is lethal. Advantage was taken of this to screen for genetic modifiers; Adar overexpression lethality is rescued by reduced dosage of the Rdl (Resistant to dieldrin), gene encoding a subunit of inhibitory GABA receptors. Reduced dosage of the Gad1 gene encoding the GABA synthetase also rescues Adar overexpression lethality. Drosophila Adar(5G1) mutant phenotypes are ameliorated by feeding GABA modulators. We demonstrate that neuronal excitability is linked to dADAR expression levels in individual neurons; Adar-overexpressing larval motor neurons show reduced excitability whereas Adar(5G1) null mutant or targeted Adar knockdown motor neurons exhibit increased excitability. GABA inhibitory signalling is impaired in human epileptic and autistic conditions, and vertebrate ADARs may have a relevant evolutionarily conserved control over neuronal excitability.
منابع مشابه
The regulation of ADAR-mediated A-to-I RNA editing in Drosophila melanogaster
RNA editing is an important mechanism for generating RNA and protein diversity, and defects in RNA editing can cause disease. The predominant form of RNA editing in metazoans is adenosine (A)-toinosine (I) editing, mediated by Adenosine Deaminases Acting on RNA (ADAR) enzymes that bind dsRNA. The translational machinery reads inosine as guanine, and hence A-to-I editing can lead to non-coding a...
متن کاملGenetic Determinants of RNA Editing Levels of ADAR Targets in Drosophila melanogaster
RNA editing usually affects only a fraction of expressed transcripts and there is a vast amount of variation in editing levels of ADAR (adenosine deaminase, RNA-specific) targets. Here we explore natural genetic variation affecting editing levels of particular sites in 81 natural strains of Drosophila melanogaster. The analysis of associations between editing levels and single-nucleotide polymo...
متن کاملCis regulatory effects on A-to-I RNA editing in related Drosophila species.
Adenosine-to-inosine RNA editing modifies maturing mRNAs through the binding of adenosine deaminase acting on RNA (Adar) proteins to double-stranded RNA structures in a process critical for neuronal function. Editing levels at individual editing sites span a broad range and are mediated by both cis-acting elements (surrounding RNA sequence and secondary structure) and trans-acting factors. Here...
متن کاملRNA editing in Drosophila melanogaster: New targets and functional consequences.
Adenosine deaminases that act on RNA [adenosine deaminase, RNA specific (ADAR)] catalyze the site-specific conversion of adenosine to inosine in primary mRNA transcripts. These re-coding events affect coding potential, splice sites, and stability of mature mRNAs. ADAR is an essential gene, and studies in mouse, Caenorhabditis elegans, and Drosophila suggest that its primary function is to modif...
متن کاملRole of Host-Driven Mutagenesis in Determining Genome Evolution of Sigma Virus (DMelSV; Rhabdoviridae) in Drosophila melanogaster
Sigma virus (DMelSV) is ubiquitous in natural populations of Drosophila melanogaster. Host-mediated, selective RNA editing of adenosines to inosines (ADAR) may contribute to control of viral infection by preventing transcripts from being transported into the cytoplasm or being translated accurately; or by increasing the viral genomic mutation rate. Previous PCR-based studies showed that ADAR mu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 42 شماره
صفحات -
تاریخ انتشار 2014